Glutamine rich and basic region/leucine zipper (bZIP) domains stabilize cAMP-response element-binding protein (CREB) binding to chromatin.
نویسندگان
چکیده
We have examined the dynamics of cAMP-response element-binding protein (CREB) binding to chromatin in live cells using fluorescence recovery after photobleaching (FRAP). CREB was found to bind to target sites with a residence time of 100 s, and exposure to a cAMP agonist had no effect on these kinetics. In addition to the basic region/leucine zipper (bZIP) domain, a glutamine-rich trans-activation domain in CREB called Q2 also appeared to be critical for promoter occupancy. Indeed, mutations in Q2 that reduced residence time by FRAP assay disrupted target gene activation via CREB in cells exposed to a cAMP agonist. Notably, insertion of the glutamine-rich B trans-activation domain of SP1 into a mutant CREB polypeptide lacking Q2 stabilized CREB occupancy and rescued target gene activation. These results suggest a novel mechanism by which the family of glutamine-rich activators promotes cellular gene expression.
منابع مشابه
Electrostatic control of half-site spacing preferences by the cyclic AMP response element-binding protein CREB.
Basic region leucine zipper (bZIP) proteins represent a class of transcription factors that bind DNA using a simple, dimeric, alpha-helical recognition motif. The cAMP response element-binding protein (CREB) is a member of the CREB/ATF subfamily of bZIP proteins. CREB discriminates effectively in vivo and in vitro between the 10 bp cAMP response element (ATGACGTCAT, CRE) and the 9 bp activating...
متن کاملEnhancement by lithium of cAMP-induced CRE/CREB-directed gene transcription conferred by TORC on the CREB basic leucine zipper domain.
The molecular mechanism of the action of lithium salts in the treatment of bipolar disorder is not well understood. As their therapeutic action requires chronic treatment, adaptive neuronal processes are suggested to be involved. The molecular basis of this are changes in gene expression regulated by transcription factors such as CREB (cAMP-response-element-binding protein). CREB contains a tra...
متن کاملDNA-binding specificity of the PAR basic leucine zipper protein VBP partially overlaps those of the C/EBP and CREB/ATF families and is influenced by domains that flank the core basic region.
The PAR subfamily of basic leucine zipper (bZIP) factors comprises three proteins (VBP/TEF, DBP, and HLF) that have conserved basic regions flanked by proline- and acidic-amino-acid-rich (PAR) domains and functionally compatible leucine zipper dimerization domains. We show that VBP preferentially binds to sequences that consist of abutted GTAAY half-sites (which we refer to as PAR sites) as wel...
متن کاملThe basic domain/leucine zipper protein hXBP-1 preferentially binds to and transactivates CRE-like sequences containing an ACGT core.
The transcription factor hXBP-1 belongs to the family of basic region/leucine zipper (bZIP) proteins and interacts with the cAMP responsive element (CRE) of the major histocompatibility complex (MHC) class II A alpha, DR alpha and DP beta genes. However, the developmental expression of hXBP-1 as revealed by in situ hybridization in mouse embryos, has suggested that it interacts with the promote...
متن کاملIntramolecular inhibition of activating transcription factor-2 function by its DNA-binding domain.
ATF-2 is a cellular basic region-leucine zipper (bZIP) transcription factor that can mediate diverse transcriptional responses, including activation by the adenovirus Ela protein. ATF-2 contains an activation domain, required for transcriptional activity, but in the absence of an appropriate inducer, full-length ATF-2 is transcriptionally inactive. Here we have investigated the mechanism underl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 280 15 شماره
صفحات -
تاریخ انتشار 2005